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Interfaces have a variety of boundary conditions (or jump conditions) that need to
be enforced. The Ghost Fluid Method (GFM) was developed to capture the bound-
ary conditions at a contact discontinuity in the inviscid Euler equations and has
been extended to treat more general discontinuities such as shocks, detonations,
and deflagrations and compressible viscous flows. In this paper, a similar boundary
condition capturing approach is used to develop a new numerical method for the
variable coefficient Poisson equation in the presence of interfaces where both the
variable coefficients and the solution itself may be discontinuous. This new method
is robust and easy to implement even in three spatial dimensions. Furthermore, the
coefficient matrix of the associated linear system is the standard symmetric matrix
for the variable coefficient Poisson equation in the absence of interfaces allowing for
straightforward application of standard “black box” solvers. 2000 Academic Press

1. INTRODUCTION

The “immersed boundary” method [20] use8-&unction formulation to smear out the
solution of the variable coefficient Poisson equation on a thin finite band about the interf
see [21] for details. In [23], the “immersed boundary” method was combined with the le
set method, resulting in a first order numerical algorithm that is simple to implement e
in multiple spatial dimensions. However, the humerical smearing at the interface ha:
adverse effect on the solution, forcing continuity at the interface regardless of the approp
interface boundary conditions. That is, the numerical solution is continuous at the inter
even if the actual boundary conditions imply that the solution should be discontinuous
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The “immersed interface” method [10] is a second order numerical method designe
preserve the jump conditions at the interface in contrast to the numerical smearing ir
duced by thé-function formulation of the “immersed boundary” method. The “immerse
interface” method incorporates the interface boundary conditions into the finite differe
stencil in a non-trivial way that preserves jumps in both the function and its derivativ
However, this algorithm is fairly complex and has only been extended to three spatial
mensions for the simple case of a stationary interface [12]; i.e., the method has not yet|
extended to treat three dimensional moving interfaces. Furthermore, the corresponding
ear system that needs to be solved is not symmetric, dramatically reducing the numb
standard fast linear solvers that can be utilized with this method, although it should be ni
that one fast solution technique was used in conjunction with this method in [11]. In contr.
thes-function formulation of the “immersed boundary” method has a corresponding line
system whose matrix is symmetric, allowing a wide range of standard fast linear solver
be utilized.

Another notable technique, presented in [7], is a second order accurate humerical me
that preserves jumps at the interface with a resolution comparable to that of the “imme
interface” method. A clever premise underlying this method is the ability to smoott
extend the solution outside the physical domain into a fictitious domain and to use thest
tended values in the numerical method. While this method suffers from a non-symme
linear system and the usual difficulties that this introduces, the authors did show tha
method was compatible with both multigrid and adaptive mesh techniques. However,
addressed only Dirichlet boundary conditions and did not extend the method to treat inter
jump conditions.

It should be noted that the idea of using extended values and fictitious domains is
new; e.g., [14, 15, 17] used similar ideas to solve the Laplace equation on irregular dom
with the help of integral equations. That is, a system of integral equations is solved,
then the results are used in the discretization of the Laplacian. In [18], a fast version of
algorithm which depends in part on the fast algorithms for computing the integrals [16] v
presented. The interested reader is also referred to [5] for more details on fast methoc
the integral equations.

In [3], the Ghost Fluid Method (GFM) was developed to properly treat the bounde
conditions in [19], removing the spurious oscillations shownin [9]. The GFM was original
designedtotreat contact discontinuities inthe inviscid Euler equations, butitwas general
to treat shocks, detonations, and deflagrations in [2] and compressible viscous flows ir
The generalized GFM captures the appropriate Rankine—Hugoniot jump conditions a
interface without explicitly enforcing these jump conditions. Instead, the GFM creates
artificial fluid which implicitly induces the proper conditions at the interface. In the flaw
of the level set function which gives an implicit representation of the interface, the GF
gives an implicit representation of the Rankine—Hugoniot jump conditions at the interfs
Since the jump conditions are handled implicitly by the construction of a ghost fluid, t
overall scheme becomes easy to implement in multidimensions.

In this paper, a similar boundary condition capturing approach is used to develop a |
numerical method for the variable coefficient Poisson equation in the presence of interfe
where both the variable coefficients and the solution itself may be discontinuous. This |
method is implemented using a standard finite difference discretization on a Cartesian
making it simple to apply in as many as three spatial dimensions. Furthermore, the co
cient matrix of the associated linear system is the standard symmetric matrix for the vari
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coefficient Poisson equation in the absence of interfaces allowing for straightforward
plication of standard “black box” solvers. Most importantly, this new numerical meth
does not suffer from the numerical smearing prevalent irsthanction formulation of the
“immersed boundary” method. In fact, the new method preserves jumps at the inter
with a resolution comparable to that of the “immersed interface” method. See [13] fc
theoretical justification of this new method.

Before proceeding, a few comments on the need for yet another new method may be |
der, especially since this new method is only first order accurate. First and foremost, note
the second order accurate methods have not yet achieved widespread success. For ex
the “immersed interface” method is more a strained attempt to satisfy truncation errot
static two dimensional interfaces than a robust second order method. That is, the imme
interface method has not yet been applied to three dimensional problems with moving
terfaces or to the multiphase Navier Stokes equations in any dimension. Furthermore, \
it was applied to the Hele—Shaw problem in [6], the solutions quickly degenerated to
order accuracy even though new ad hoc fixes were used in the discretization. Becau
these complications, the first order “immersed boundary” method is the only scheme th
currently used for complex numerical simulations such as the three dimensional multipl
Navier—Stokes equations. However, the immersed boundary method has problems
own. For example, the immersed boundary method cannot produce discontinuous solu
and thus is unable to properly model the jump in pressure due to surface tension fc
in the Navier—Stokes equations. Various authors have avoided this problem by treatin
pressure as a continuous function and adding new source terms to the momentum
tions; see for example [1, 23, 24]. Unlike the immersed boundary method, our method
be used to obtain discontinuous solution profiles as will be shown in this paper. Furtl
more, we note that our new method can be used to model the Navier—Stokes equa
directly, i.e., without the addition of source terms to model the effects of surface tens

[8].

2. EQUATIONS

Consider a Cartesian computational domé&inwith exterior boundarg2 and a lower
dimensional interfacd;, that divides the computational domain into disjoint pie&®s,
andQ™. The variable coefficient Poisson equation is given by

V-(BX)VUuX) = f(x), xeQ

1)
uix) =g(x), xeadf,

wherex = (X, y, z) are the spatial dimensiong,= (ax By BZ) is the divergence operator,
andB(x) is presumed to be continuous on each disjoint subdoréairand Q2+, but may
be discontinuous across the interfdteFurthermore8(x) is assumed to be positive and
bounded below by some> 0.

The jump conditions or internal boundary conditions are specified along the intérfac
as

[ur =ax), xeTl

2
[ﬁun]r = b(X)v X e Fs ( )
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where
[ulr = u"(x) —u"(x)

[Bunlr = B OOUL () — B~ (XU, (X)

@)

specifies the direction of the jump with the:® subscripts referring t&2*. Note that
u, = Vu - N is the normal derivative af, whereN is the local unit normal to the interface.

Equation (1) uses Dirichlet boundary conditions for illustration purposes only, as f
boundary conditions 082 are not crucial to our numerical method. In fact, it takes little
effort to replace the Dirichlet boundary conditions with Neumann boundary conditiol
reformulating the Poisson equation as

V- (BX)VUX) = f(X), xeQ

(4)
Un(X) = g(x), X €%,

throughout the text.

3. NUMERICAL METHOD

Since the interface can have a fairly complex shape, the interface location is represe
by the zero level of a signed distance function; i.e., a level set representation of the inter
is used [21].

3.1. One Dimension

Consider the unit domaif® = [0, 1] where the interface is a single poifit= 0.5 with
a level set representation ¢f=x — 0.5, so that the interface location is recovered whel
¢ =0. Sinceg is the signed distance function, the set of all points wigete0 and the set
of all points wherep > 0 represent two disjoint subdomaigs, andQ*, respectively. For
the numerical algorithm, one needs to identify whether a given point is locat@d ior
Q*, which is determined by considering the local sigmpofinlessp = 0 implying that the
point is located directly on the interface itself. Since the interface is a lower dimensio
set, this situation can be rectified by definiftg as the set of all points whege< 0 and
Q* as the set of all points whete> 0, so that no points lie directly on the interface.

The computational domain is discretized into cells of siwe where the cell centers
are referred to as grid points or grid nodes, with itttegrid node located at;. The cell
edges are referred to as fluxes so that the two fluxes boundinthtbemputational cell are
located at; +1,2. The solution to the Poisson equation is computed at the grid nodes an
written asu; = u(x;). An analogous definition holds fdt, gi, and the level set functiog .

In general, interfaces move throughout the gridas/olves in time, and a reinitialization
procedure is needed to maintapnas an approximate distance function [22]. Sikgces
known only at the grid nodes, the value ofp at fluxes is defined by the linear average of
the nodal values; e.g.,

o + dit1
— (5)
is a second order accurate approximatiop & the flux located between thils and { 4 1)st
cells.

iv12 =
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The level set function is used to define the unit normal as

Vo

= Vel ©)

where the normal is computed at each grid node using central differencing. For examy

N — <¢i+1_¢i—l>/‘¢i+l_¢i—l
' AX AX

in one spatial dimension. Note that the denominator in equation 7 could be identically 2
in certain rare situations, but the numerical method does not make use of the normal in t
situations. Whemp = x — 0.5, Eg. (6) implies thalN =1 everywhere so that, = uy.

= (¢i+1— -0/ |di+1 — di-1l (7)

3.1.1. The Laplace Equation

Consider the one dimensional Laplace equation with1 and f (x) = 0 given by
Uxx == 0 (8)

with fixed Dirichlet boundary conditions o8<2. Ignoring the interface, or equivalently
setting U]r =[ux]r =0, the exact solution is merely a straight line connecting the tw
fixed points ord 2. For example, if the boundary conditions ai@®@) = 0 andu(1) =1 then
the solution isu = x on [0, 1]. The standard second order discretization

() - ()] fax=o ©)

can be used to solve this problem. For each unknawriq. (9) is used to fill in one row
of a matrix, creating a linear system of equations. Since the resulting matrix is symme
a wide variety of fast linear solvers can be used. For linear solvers that require an in
guess, setting all; identically zero is usually sufficient.

Next consider {ijr =1 and k] = 0 with Dirichlet boundary conditiona(0) =0 and
u(1) =2 yielding an exact solution af=xin [0, .5] andu=x + 1in (.5, 1] wherex =0.5
is included inQ2~ as previously discussed. Consider the exact solutiox. #indx,; are
the nodes adjacent to the interface, one can seeuhat € ux)/Ax is O(1/AX), while all
the other terms of the forru; 1 — u;)/Ax are O(1) and approximate the local derivative.
Since the derivative is not defined across the interfacguhg — ux)/Ax termis not well
defined. Obviously, this term needs to be modified to give a reasonable approximatic
the derivative near the interface.

The jump condition, §ijr = 1, implies thatu™ (x) — u~(x) =1 at the interfacé". Since
the underlying idea of the Ghost Fluid Method is to apply boundary conditions near
interface as opposed to applying them at the exact interface location, the jump condit
are rewritten asi;” —u;” = 1 at every computational grid node. Then for every value;of
in 7, one can defing;” =u;” + 1, including the boundary, whetg (0) =u~(0) + 1=1.
Likewise, for every value ofi” in 2, one can defing;” = u;" — 1 including the boundary
whereu™ (1) =u™ (1) — 1= 1. At this point, every grid node has two values for the solutior
u;” andu;t, and one can see from the boundary conditions that the exact solutians-ane
on[0,1]andu* =x + 1 on[0, 1]. Furthermore, the jump conditiary, — u;” = 1, is satisfied
at every grid point and the boundary.
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Two equations from the linear system containthg_; — ux)/Ax term, the first termin

(S5 ( e

and the second term in

Uio = Uiia | _ (U — Uk Ax=0 (11)
AX AX ’

where the %" superscripts have been added to emphasize the domalr &sr eachu;.
Both these equations suffer from the mixing of terms from different domains and are p
candidates for obtaining the exact solution. The previous paragraph illustrates that Egs.
and (11) should be replaced by

(S5 (5) e

and

|:<uk++2_u;r+1) _ (u;r“_u'j)}/Ax:O (13)
AX AX

to remove the mixing of the£” values. The nodal jump conditions imply thaf_ , =
u., — 1 andu) =uy + 1, giving rise to

((2o8) (e o

(G REEE P .

from Egs. (12) and (13) as replacements for Egs. (10) and (11) in the linear systerr
Egs. (14) and (15) thei, 1 — ux)/ AX terms have been modified in a way that makes thel
O(1) instead ofO(1/AX).

In general, il = a(xr), wherexr is the interface location. The jumps at the grid nodes
ax = a(xx) andax1 = a(xks1), and the local values @f can be used to interpolate the jump
at the interface as

and

ar — | Pr1l + Akralokl
|| + 1Pkl

() (e
AX AX

(16)

writing
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and

K(uk+2 — uk+1)> ~ (Uk+1 — (U + ar)ﬂ /AX —0 (18)
AX AX

for use in the linear solver. It is interesting to note that one must use the same value c
in both Eq. (17) and Eq. (18). For example, if one were toaysie Eq. (17) anday.; in
Eq. (18), then the linear system would not have a solution, since the jump at the inter
would not be well defined.

Next, consider the derivative jump condition and rewrite the standard second order
cretization (Eqg. (9)) as

(Us)i+1/2 — (Ux)i—1y2
AX

—0, (19)

assuming that the derivativas,, are known at fluxes and thus subscripted with1/2.
Once again assume that the interface is located betwe@md x,;,1 and use the sign
of ¢x11/2 to determine whethefuy)i1/2 lies in @~ or Q*. For the sake of exposition,
assume thatuy)i1/2 lies in Q*. The case wheréuy)x11/2 lies in 2 is similar and will
be considered shortly.

Consider {i]r =0 and py]r = 1 with Dirichlet boundary conditions(0) = 0 andu(1) =
1.5 yielding an exact solution ofi=x in [0, 0.5] andu=2x in (0.5, 1]. The exact
solution dictates thafuy)k—1/2=1 and (ux)k+12=2 at the fluxes adjacent to the in-
terface producing ai®(1/Ax) value of [(Ux)k+1/2 — (Ux)k—1/2]/AX in Eq. (19), while
all the other terms of the form({iy)i+1/2 — (Ux)i—1/2]/AX are identically zero and ap-
proximate the local second derivative. In a more general situation, the terms of the f
[(U)i+1/2 — (Uy)i—1/2]/ AX will be O(1) and approximate the nonzero second derivative
while the [(Ux)k+1/2 — (Ux)k—1/2]/ AX term is still O(1/Ax). Since the second derivative is
not defined across the interface, thi@)x+12 — (Ux)k—1/2]/ AX term is not well defined.

This time only one term of the form of Eq. (19) involves differencing across the interfa
It can be written as

(ux)k++1/2 - (Ux)lz_l/z _
AX

0 (20)

with the “+” superscripts emphasizing the domain. This equation suffers from the mixi
of terms from different domains and should be replaced by

(Ux)iy1y2 = Uxdk_1y2
AX

0, (21)

where the “" signs are used fof2~ instead of the 4" signs for Q*, since this is the
equation forugx which has previously been assumed to be&in. Writing the derivative
jump condition at fluxes implies thatix), 1/, = (Ux)i,1,» — 1, leading to

((ux)L.l/z - 1) - (Ux)lz_l/z _
AX B

0, (22)

where the modified(Liy)w+1/2 — (Ux)k-1/2]/ AX term isO(1) instead ofO(1/AX).
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In general, {ix]r = b(xr), wherexr is the interface location ank = b(xy) andby,; =
b(xx+1) can be used to define

_ bdiral + byl

= 23
' bl + sl (23)

as the jump at the interface, with
(U2 = br) — U1 _o (24)

AX

replacing Eq. (22).
Finally consider both jump conditionsu][- =a(xr) and Jux]r =b(xr). Combining
Egs. (17), (18), and (24) gives

(Uks1 —ar) — Uk Uk — Uk—1 _
K AX _br> - < AX H/AX‘ h 2
- — (U +
[(Uk+2AXUk+l> B (Uk+1 il;‘(k ar))] / AX = o, (26)

where f (x) is no longer set to zero. Note that this particular discretization is based on
fact that the interface lies betweggpandx1 and thatp.,1,» implies that the flux located
atXiy1/2 lies inQ~. If insteadgy 1,2 implies that the flux located ak1/» lies in @ then
Egs. (25) and (26) are replaced with

[(M) - (u)] /Ax — fi (27)
AX AX

_ — (U +
(S5 (St ) fren o

for use in the linear system.
Note that Egs. (25) and (26) can be rewritten as

Uky1 — Uk Uk — Ux—1 . ar br
K AX )_< AX H/Ax_f”(Ax)”H (@9

Uk+2 — Uky1 Uk+1 — Uk _ _ a—r
K AX ) - ( AX H/AX = Tt~ a2 0

while Egs. (27) and (28) can be rewritten as

Uk+1 — Uk Uk — Uk-1 _ ar
[( AX ) B ( AX )VAX =t ane 1)

and

and

and
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and

Uk2 — Ukg1 Uky1 — Uk ar br
= B e N | N S S M. 32
K AX ) ( AX )V =t tax 2

to emphasize that this numerical method yields a linear system with no modification
the coefficient matrix. That is, all modifications occur on the right hand side of the line
system and the coefficients of the unknowns remain equal to those of the standard La
equation on a uniform domain. This allows standard “black box” solvers to be used on
associated linear system.

3.1.2. Subcell Resolution

Taking the subcell location of the interface into account allows us to discretize the der
tive jump condition more accurately. Assume that the interface lies betweand x, 1
and that {i]r =0 and py]r =br. Then

_ o
|| + |Pkral

can be used to estimate the subcell interface location. That is, the interface splits this
into two pieces of siz8 Ax on the left and size (+ ) Ax on the right. Denoting the value
of u at this subcell interface location loy and discretizing the jump conditiony{]r = br,

as
Ukt+1 — Uy U —Uc\
((1—9)Ax> B ( 0 AX ) =br (34)

allows one to solve fou, as

(33)

Uy = U160 + Ukl —0) — bro(1 — 0)Ax (35)

so that approximations to the derivatives on the left and right sides of the interface ca
written as

U — Uk Uk+1 — Uk
= —br(1-06 36
AX AX r( ) (36)
and
U1 — Uy Uk+1 — Uk
= bro, 37
(1— 6)AX ax T 37

respectively.
These new approximations allow one to write

(Ugs1 —ap) — Uk Uk — Uk—1 _
(B v (52 fan

Uk+2 — Uk+1 Uk+1 — (Uk + @r) _
(B (S ) et o

and
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in place of Egs. (25), (26), (27), and (28), where the position of the interface with regart
the subcell flux is no longer a consideration. Likewise,

Uk1 — Uk Uk — Uk—1 _ ar br(1-10)
K AX >_< AX )]/AX_ kar(AX)ZJr AX (40)

Uk+2 — Uk4+1 Uk+1 — Uk _ & br_e
K AX ) ( AX H/AX_ et = (ax2 T ax (41

replace Egs. (29), (30), (31), and (32).

and

3.1.3. The Poisson Equation

Consider the one dimensional variable coefficient Poisson equation

(,BUx)x = f(X) (42)

with fixed Dirichlet boundary conditions a2 and a standard second order discretizatio

of
{ﬂiﬁul/z(%) _ﬂi—l/Z(%>:|/AX = fi (43)

for each unknown;. At the fluxes 811> = B(Xi+1/2) are defined in accordance with the
side of the interface the flux is located on as determined; by». Note that this produces
a B with no numerical smearing or averaging; i.8.may be discontinuous across the
interface. Next consider the jump conditiong] =a(xr) and [Bux]r =b(xr). If ¢x and
¢k+1 indicate that the interface is located betwegrand xi, 1, then Egs. (16), (23), and
(33) can be used to defimg, br, and6.

Once again, taking the subcell location of the interface into account and assuming
[u]lr =0 allows one to discretize the jump conditiofuk]r =br, as

pf Upr — Uy AU — U
P ((1—9)Ax> P ( 0 AX )_br (44)

and solve fou, as

_ BTuk10 + BT u(1 - 0) — bro (1 — 6) Ax

u 45
! BH6+B-(1—6) (45)
so that approximations to the derivatives on the left and right sides of the interface cal
written as
(U — Uk A ( Ukt+1 — Uk Bbr(1—6)
— | = — 46
P () () - @
and

S Ui =W\ Uk — U\ | Bbro
P ((1—9>Ax>_’3< AX )+ p 47
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where

BB~
B0+ B (1-0)

= (48)

defines an effectivg.
The discussion above leads naturally to

~((Uky1—ar) —u br(1-6) Uk — Ug_
[ﬁ( k1 Axr kK F,3+ >—ﬂkl/2(%)]/szfk (49)

_ . - + bré
[ﬁk+3/2<—uk+2AXuk+l) - ,3<—uk+l g(k o)y ﬂr—_)]/AX = fia (50)

and

asthe equations for the unknownsanduy_ 1, respectively. Of course, these can be rewritte
as

~ [ Ukp1 — Uk Uk — Uk_1 _ Bar | Bbr(1-0)
() oM )] fox= v e B

and

Uk+2 — Ukt1 5 Uk+1 — Uk _ Bar Bbro
[5k+3/2(T> - ﬂ(T)]/AX = fip1 — (A%)2 + B AX (52)

to emphasize that this numerical method yields a symmetric linear systemwith = B.

3.1.4. Summary

Consider the variable coefficient Poisson equation

(Bux)x = f(x) (53)

with interface jump conditions,ulr =a(xr) and [Buy]r =b(xr). In addition, assume
that¢ <0 in Q™ and¢ >0 in Q7, so that the unit normal points frof2~ into Q*.
SinceN =n!=41, one can writal, = uyn® and [Bun]r = [Buy]-n* =b(xr). Moreover,
[Bux]r = b(xp)nt.

For each grid point, one can write a linear equation of the form

[ﬂiﬂ/z(%> - ﬂi—1/2(%)}/AX = fi + F- + FR (54)

and assemble the system of linear equations into matrix form. Bagh, is evaluated
based on the side of the interface thiaandx,. 1 lie on. If xx andxy. 1 lie on opposite sides
of the interface, thepi1,» is defined along the lines of Eq. (48) and Eq. (33). First defin
¢~ andg™ equal to the values @f and¢y1 in the obvious fashion; thefi.1,, is defined
as

BB (¢~ 1+ 197D
oFlo~ I+ B o]

(59)
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Consider the left arm of the stencil, i.e., the line segment connextiagdx; _;. If both
¢i <0 andg;_1 <0 or if bothg; > 0 andg;_; > 0, thenF- = 0. Otherwise, define

0 = |pi—1] (56)
i | + |pi—1l
a|gi—1| +ai_1l¢il
= 57
S P &7
and
TN Y
bl-* — bI n| |¢I—l| + bI—1n|_]_|¢)l | , (58)

i | + |i-1]

where the normal is calculated at each grid node using central differencipg<i® and
¢i_1>0, then

FL_ Bi-year  Pi-1/2brf

, 59
(AX)? Bt AX (59)
otherwise ifg; > 0 andg;_, <0, then

FL_ _ Biipar | Pioiebro (60)

(AX)? B~ AX

Next consider the right arm of the stencil, i.e., the line segment connegtergdX; ;1.
If both ¢; < 0 andg;,1 <0 or if bothg; > 0 and¢; 11 > 0, thenF R = 0. Otherwise, define

I (61)
|i | + |Bi 11l
ar = ai|¢i+1| +ai+1|¢i| (62)
1éi| + i+l
and
b — b ni1|¢i+1| + bi+1nil+1|¢i |’ (63)

i | + |i1al

where the normal is calculated at each grid node using central differencipg<i® and
¢i+1> 0, then

_ Bivipar | Biya2bro

FR = : 64
(AX?) B+ AX (64)

otherwise if¢; > 0 and¢; 1 <0, then
ER_ _Bivizar i1 ©5)

(AX?) B~ AX
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3.2. Two Dimensions

Consider the two dimensional Poisson equation

(Bux)x + (Buy)y = f(X) (66)

with interface jump conditions,ulr =a(xr) and [Bun]r =b(xr). The unit normal is
N=(n',n?) with ¢ <0 in @~ and¢ >0 in QF, implying that the unit normal points
from Q~ into Q.

The normal and tangential derivatives can be defined in termag, @iy, andN as

Up = Uxn® 4 uyn? (67)
and

Uy = uxn? — uyn’, (68)
respectively. Then

Uy = u,nt + u;n? (69)
and

Uy = Upn?® — uen* (70)

follow directly from Egs. (67) and (68). Multiplying Egs. (67) and (68)&and taking the
jump across the interface leads to

[Bunlr = [Bux]lrn® + [Buy]lrn? (71)
and
[Budr = [Buxlrn® — [Buy]lrn®; (72)
note thatN is continuous across the interface. In the same fashion,
[Budr = [Bunlrn® + [Buirn® (73)
and
[Buylr = [Bunlrn® — [Bugrn® (74)
can be obtained from Egs. (69) and (70).
Suppose that
[Buylr = [Bun]rn* (75)
and
[Buylr = [Bun]rn? (76)

are used in place of Egs. (73) and (74). While Egs. (75) and (76) are false in gent
they still lead to an identity when plugged into Eq. (71). However, they leadudf =0



164 LIU, FEDKIW, AND KANG

when plugged into Eq. (72). That is, Eqgs. (75) and (76) allow one to correctly capture
jump in the normal derivative while smearing out the jump in the tangential derivati
More importantly, Egs. (75) and (76) allow the derivative jump conditigoi,Jr = b(xr),
to be rewritten as two separate jump conditioi] - = b(xr)n* and [Buy]r = b(xr)n?,
allowing a dimension by dimension application of the numerical method.

In two dimensions, each grid poirit () is discretized as

Uig1 — Ui j Uij — U1 | Uij11 — Ui
{ﬂiﬂ/z,j (%) —Bi—1/2,j <%>} /AX + {ﬂi,j—&-l/z <%y”>

Ui — Ui
—,Bi,j—1/2(I’JTy"Jl>}/Ax = fi;+F*+FY 7

and included in the linear system of equations. E&gh,» j is evaluated based on the side
of the interface thak, ; and x4 lie on. If x; andxe1,; lie on opposite sides of the
interface, the— and¢™ are set equal to the valuesgafj andgy .1 j inthe obvious fashion,
andpk11/2,j is defined according to Eq. (55). Similar,«+1/2 is defined according t&
andx; x4 1. In addition, note thaF* = F- + FRandFY=FB + FT,

Consider the left arm of the stencil, i.e., the line segment connegfip@nd x;_1 ;.
If both ¢ ; <0 and¢i_1 ; <0 or if both¢; j >0 and¢;_1 j >0, thenFL =0. Otherwise,
define

_ |¢i—1,j| (78)
|i,j| + |di—1,jl
ar — ajlgi—1jl +ai_1jldijl (79)
i j| + |-,
and
by — bt i —ajl + bi—l,jnil_l,j|¢i,j|, (80)

|ij| + |i—v,jl

where the components of the normal are calculated at each grid point with central dif
encing. If¢; ; <0 andgi_1; > 0, then

_ Bicipjar Bi—yzjbrf

Fh= 81
(AX2?) BHAX (81)

otherwise if¢; j >0 andg;_1 ; <0, then
L_ _Picpiar | Bioipibrt ©2)

(AX2) B~ AX

Consider the right arm of the stencil, i.e., the line segment connextingndx; 1 ;.
If both ¢ ; <0 andg;;1; <0 or if both¢; ; > 0 and¢i 1 >0, thenF R =0. Otherwise,
define

_ |Pi41,jl (83)
i il + [Pivajl
ar — 8 jlpivejl + @&yl jl (84)

i j| + |diye,jl
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and
1 1
bi N l1gice il +Biva Ny ldijl
i il + |dise,jl

where the components of the normal are calculated at each grid point with central di
encing. If¢; ; <0 andgi;1j >0, then

br = , (85)

R _ Bi+yzjar | Pivizjbro
STz T pax (©0)

otherwise if¢; ; > 0 and¢; 11 j <0, then

eL_ _Bweziar Pivyzbro (87)
- (Ax)? B-AX

Consider the bottom arm of the stencil, i.e., the line segment connegtjrandx; j_i.
If both ¢; j <0 andg¢; j—1 <0 or if both¢; j >0 and¢; j_1 >0, thenFB = 0. Otherwise,
define

_ |bij -1l (88)
i il + |i j-1l
a = ajloi, -1l +a j-1l9i ;] (89)
@i il + i)l
and
by — bi jn?;l¢i.j—al + by jan?; 4ldi (90)

1&i,j| + [¢ij—al

where the components of the normal are calculated at each grid point with central di
encing. If¢; ; <0 andg; j_1 > 0, then

_ Bij-year | Bij-1/2bro

FB = ; 91
(Ay)? Ay e

otherwise if¢; ; > 0 and¢; j_1 <0, then
B _ _Puiipdr Pii-1/2br6 92)

(Ay)? B~Ay
Consider the top arm of the stencil, i.e., the line segment connegtjramdx; ;1. If both
#i.; <0andgi j+1 <0 orif bothe; ; > 0 andg; j+1 > 0, thenFT = 0. Otherwise, define

i j+al

= v+l (93)
1&i,j| + i jral
ar — 3 jldi i1l + & jraldijl (94)
[i,j| + i j+al
and
b n2. | +b n2. .
br _ i, ] |,J|¢|,J+1| i, j+1 |’]+1|¢I,J|’ (95)

i il + |oi j+al
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where the components of the normal are calculated at each grid point with central dif
encing. If¢; ; <0 andg; j11> 0, then

1 Bij+iar | Bij1/2bro

; 96
(Aay)? Ay (59)
otherwise ifg ; > 0 andg¢; j+1 <0, then

T_ _,3i,1+1/22<'ir B ﬂi,j+1/2br‘9. (97)

(Ay) Ay

3.3. Three Dimensions

Consider the three dimensional Poisson equation

(,Bux)x + (,Buy)y + (ﬂuz)z = f(X) (98)

with interface jump conditionsu]r = a(xr) and [Bup]r =b(Xr). The unit normal isN =
(%, n?, n%) with ¢ <0 in @~ and¢ > 0 in Q*, implying that the unit normal points from
Q™ into Q*.

The normal derivative is defined by

leading to

[Bunlr = [Bux]rn® + [Buy]rn® + [Bu]rn®, (100)

since N is continuous across the interface. Note thAtr =[Bun]rnt, [Buylr =
[Bun]rn?, and [Bu,]r = [Bua]r-n® are not identities, but they do lead to the correct jum
condition on the normal derivative when plugged into Eg. (100), although the tangen
derivatives are smeared out. Rewritirguf]r =b(xr) as three separate jump conditions,
[Bux]r =b(xr)nt, [Buy]r = b(xr)n?, and [Bu,]r = b(xr)n*, allows the three dimensional
numerical method to be applied in a dimension by dimension fashion with a discretiza
of

Uisnj — Uij Uij — U] Ui j+1 — Ui,j
{5”1/2,1'( = JAX ”) —,3i1/2,j< - Axl ')]/Ax—i— l:ﬂi,j+1/2< I HAy 'J>
—ﬂi,jl/z(—"' AyLJ l)}/Ax—i— [ﬂi,jﬂ/z(—"HlAy "J>

_ﬂi,j—l/z(iw'j _A;i’j_lﬂ/Ax = fi|+ F 4+ FY 4+ F? (101)

for the grid pointg, j, k).
The remaining details are left to the reader; they are a straightforward extension of
two dimensional discretization.
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4. EXAMPLES

4.1. Example 1

Here we consider two examples that were discussed earlier in the text. Cangieed
on [0, 1] with u(0) =0 andu(1) = 2. The interface is located at=0.5 with [u] =1 and
[ux] = 0. Figure 1 shows the solution computed with 100 grid points plotted on top of t
exact solution ofi = x to the left ofx = 0.5 andu = x + 1 to the right ofx =0.5. In Fig. 2,
the boundary conditions and jump conditions are changed®op=0, u(1) = 1.5, [u] =0,
and ux] = 1. Once again the solution was computed with 100 grid points and plotted on
of the exact solution afi = x to the left ofx = 0.5 andu = 2x — 0.5 to the right ofx = 0.5.

FIG. 1. Uy=0,[u]=1 [u]=0.
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FIG.2. uw=0,[u]=0,[u]=1.

Note the crisp representation of the interface characteristic of the GFM with no numer
smearing.

4.2. Example 2

Consider Buy)x = f(x) on [0, 1] with u(0) =0 andu(1) =0. The interior region is
defined by|x — 0.45| < 0.15 with the unit normal pointing from the interior region to the
exterior region. On the interior regigh= 2 andf (x) = (8x% — 4)e*X2, while on the exterior
regiong=1 and f (x) =0. At x=0.3, [u] = —e %% and [Bu,] = —1.2e7999, while at
x =0.6, [u] = —e %% and [Bun] = 2.4e %36, Figure 3 shows the solution computed with
100 grid points plotted on top of the exact solutioru@t) = e on the interior region and
u(x) =0 on the exterior region.
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FIG. 3. One spatial dimensiory - (8Vu) = f(x), [u] #0, [Bu,] #0.

4.3. Example 3

Considerv - (8Vu) = f (x, y) in two spatial dimensions on [Q] x [0, 1] with the inter-
face defined by the circlex(— 0.5)? + (y — 0.5)? = 0.25” with an outward pointing normal
vector,N = (4x — 2, 4y — 2). As an exact solutiony(x, y) = e**~¥* on the interior of the

circle andu(x, y) =0 on the exterior of the circle with the appropriate Dirichlet bound

ary conditionsg = 2 with f (x, y) =8(x?+ y? — 1)e*>‘2*yz on the interior of the circle and
B =1with f (x, y) =0 on the exterior of the circle. The jump conditions are+ —e XY
and [Bun] =8(2x2+2y2 — x — y)e¥~¥*. Figure 4 shows the numerical solution with

61 grid points in each direction and Table | shows the results of numerical accur

tests.
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FIG. 4. Two spatial dimensiong/ - (8Vu) = f (X, y), [u] #0, [Bu,] #0.

4.4, Example 4

ConsiderV - (8Vu) = f (X, Y, 2) in three spatial dimensions on,[0] x [0, 1] x [0, 1]
with the interface defined by the sphere«{0.5)? + (y — 0.5)2 4 (z— 0.5)2 = 0.25* with
an outward pointing normal vectoN = (4x — 2, 4y — 2, 4z— 2). As an exact solution,

TABLE |

AX  L*®-errorinU  Order L2-errorinU  Order L2-errorinv-U  Order

% 0.0088 0.0027 0.0675

i 0.0041 1.07 0.0010 1.43 0.0348 0.95
sio 0.0020 1.04 0.0003 1.73 0.0186 0.90
= 0.0011 0.86 0.0001 1.58 0.0108 0.78
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FIG. 5. Three spatial dimensions (cross section),(8Vu) = f (X, y, 2), [u] #0, [Bu,] #0.

uex, y, z) =e¥-¥"~2 on the interior of the sphere andx, y, z) =0 on the exterior of
the sphere with the appropriate Dirichlet boundary conditighs.2 with f(x,y, z2) =
8(x%+y? + 22 — 3)eX~¥'~7Z onthe interior of the sphere apd= 1 with f (x, y, 2) =0on
the exterior of the sphere. The jump conditions ailef —e~**~Y*~% and [Bun] = 8(2x2 +
2y2 + 272 — x — y — 2)e¥~¥*~Z _Figure 5 shows tha(x, y, z= 0.4) cross-section of the
numerical solution with 61 grid points in each direction and Table 1l shows the results
numerical accuracy tests for the two dimensional slice of data.

4.5. Example 5

This example was taken from [10]. Considau =0 in two spatial dimensions on
[—1, 1] x [—1, 1] with the interface defined by the circi& + y? = 0.5? with an outward
pointing normal vectoN = (2x, 2y). As an exact solutiony(x, y) =1 on the interior of
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TABLE Il

Ax  L>®-errorinU  Order L2-errorinU  Order L2-errorinv-U  Order

= 0.0064 7.49e-4 0.0335

+ 0.0035 0.87 2.37e-4 1.66 0.0142 1.24
= 0.0023 0.54 1.01e-4 1.23 0.0074 0.94
= 0.0015 0.68 4.66e-5 112 0.0049 0.59

the circle andi(x, y) = 1+ In(2/x2 + y2) on the exterior of the circle with the appropri-
ate Dirichlet boundary conditions. The jump conditions affes 0 and [u,] = 2. Figure 6
shows the numerical solution with 61 grid points in each direction and Table IIl shows

results of numerical accuracy tests.

FIG. 6. Two spatial dimensions\u=0, [u] =0, [u,] #0.
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TABLE Il

AXx  L*®-errorinU  Order L2-errorinU  Order L2-errorinv.-U  Order

i 0.0326 0.0299 0.1240

% 0.0130 1.33 0.0111 1.43 0.0463 1.42

i 0.0050 1.38 0.0040 1.47 0.0167 1.47

i 0.0019 1.40 0.0014 1.51 0.0060 1.48
4.6. Example 6

This example was taken from [10]. Considau =0 in two spatial dimensions on
[—1, 1] x [-1, 1] with the interface defined by the circlé + y? = 0.5% with an outward
pointing normal vectorN = (2x, 2y). As an exact solutionu(x, y) =e* coqy) on the

FIG. 7. Two spatial dimensiong\u =0, [u] #0, [u,] #0.



174 LIU, FEDKIW, AND KANG

TABLE IV

Ax  L>®-errorinU  Order L2-errorinU  Order LZ%-errorinvV-U  Order

z 0.0153 0.0054 0.1380

%) 0.0081 0.92 0.0022 1.30 0.0703 0.97
% 0.0044 0.88 0.0009 1.29 0.0370 0.93
% 0.0023 0.94 0.0003 1.59 0.0209 0.82

interior of the circle and(x, y) = 0 on the exterior of the circle with the appropriate Dirichlet
boundary conditions. The jump conditions an¢f —e* cog'y) and u,] = 2e*(y sin(y) —

x cogy)). Figure 7 shows the numerical solution with 61 grid points in each direction a
Table IV shows the results of numerical accuracy tests.

FIG. 8. Two spatial dimensiong\u =0, [u] 0, [u,] #0.
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TABLE V

AXx  L*®-errorinU  Order L2-errorinU  Order L2-errorinvV-U  Order

2 0.0068 0.0033 0.0770

zio 0.0033 1.04 0.0014 1.24 0.0337 1.19
4—10 0.0014 1.24 0.0005 1.49 0.0169 1.00
% 0.0008 0.81 0.0002 1.32 0.0108 0.65

4.7. Example 7

This example was taken from [10]. Considau =0 in two spatial dimensions on
[—1, 1] x [—1, 1] with the interface defined by the circi& + y? = 0.5? with an outward
pointing normal vecto = (2x, 2y). As an exact solutiony(x, y) = x> — y? on the inte-
rior of the circle andi(x, y) = 0 on the exterior of the circle with the appropriate Dirichle
boundary conditions. The jump conditions ang] £y?—x? and [u,] =4(y? — x?).
Figure 8 shows the numerical solution with 61 grid points in each direction and Table
shows the results of numerical accuracy tests.

4.8. Example 8

This example was taken from [11]. Consideér (8Vu) = f (X, y) in two spatial dimen-
sionson {1, 1] x [—1, 1]. The interface is defined by the collection of poitt$0), y(6)),
where x(0) =0.02,/5+ (0.5+ 0.2sin(50)) cog6), y(0) =0.02/5+ (0.5+ 0.2 sin(50))
sin(@), 0 € [0, 2], and the unit normalN = (ny, ny) is assumed to point from the in-
terior region to the exterior region. As an exact solutio¢, y) = x2+ y? on the inte-
rior region andu(x, y) = 0.1(x? 4+ y?)? — 0.01In(2\/x2 + y2) on the exterior region with
the appropriate Dirichlet boundary condition=1 with f(x,y)=4 on the interior
region andp =10 with f(x, y) =16(x>+ y?) on the exterior region. The jump condi-
tions are {i] = 0.1(x? +y?)? — 0.01In(2/x2 + y2) — (x2 + y?) and [Bup] = (4(x2 + y?) —
0.1(x% + y?)~1 — 2)(xny + yn,). Figure 9 shows the numerical solution with 61 grid point:
in each direction and Table VI shows the results of numerical accuracy tests.

4.9. Example 9

This example was taken from [11]. Consider- (8Vu)= f(X,y) in two spatial
dimensions on+1, 1] x [0, 3]. The interface is defined by the collection of poifitst),
y(0)), where x(6)=0.6cog6) — 0.3cog309), y(#) =1.5+ 0.7 sin(@) — 0.07 sin(39) +
0.2sin(70), 6 € [0, 27), and the unit normalN = (ny, ny), is assumed to point from the
interior region to the exterior region. As an exact solutiofx, y) = €*(x? sin(y) + y?) on
the interior region andi(x, y) = —(x2 + y?) on the exterior region with the appropriate

TABLE VI

AXx  L*®-errorinU  Order L2-errorinU  Order L2%errorinvV.-U  Order

% 4.90e-4 3.69e-4 0.0610
% 3.20e-4 0.61 1.53e-4 1.27 0.0221 1.46
% 1.67e-4 0.94 8.49%e-5 0.85 0.0079 1.48

8% 7.35e-5 1.18 3.64e-5 1.22 0.0028 1.50
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FIG. 9. Two spatial dimension - (8Vu) = f(x, y), [u] #0, [Bu,] #0.

Dirichlet boundary conditionss = 1 with f (x, y) =€*(2 + y? + 2 sin(y) + 4x sin(y)) on
the interior region ang = 10 with f (x, y) = —40 on the exterior region. The jump condi-
tionsare{l] = —(x% + y?) — e (x? sin(y) + y?) and [Bu, = (—20x — e*((x? + 2x) sin(y) +
y2)ni+ (—20y — eX(x? cogy) + 2y))n,. Figure 10 shows the numerical solution with

TABLE VI

AX  L*®-errorinU  Order L2-errorinU  Order L2-errorinV-U  Order

L 0.2437 0.1136 1.3141
i 0.1534 0.67 0.0666 0.77 0.7969 0.72
L 0.0498 1.62 0.0189 1.82 0.2798 151

L 0.0358 0.48 0.0082 1.20 0.1992 0.49
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FIG. 10. Two spatial dimension& - (8Vu) = f(x, y), [u] #0, [Bu,] #0.

61 grid points in thex-direction and 91 grid points in the-direction. Table VII shows
the results of the numerical accuracy tests.
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